If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2-1=0
a = 1; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·1·(-1)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2}{2*1}=\frac{-2}{2} =-1 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2}{2*1}=\frac{2}{2} =1 $
| g^2+56=92 | | 3x-+7=5x-15=51-x | | -(-4x+8)-10=-106 | | a-9/5=-14/5 | | -y/5=4=14 | | 27(3+6e)=3 | | -3=12y-(y-7) | | -3-7y=-17 | | 1/2x+1/2x=x=x+1 | | –9s=–6−10s | | -3(-4x+8)-10=106 | | -(-4x+8)-10=106 | | -n-0.3(16-12n)=0.4(12-3n)-n | | 3400T+600=a | | 9-2x=7- | | .116(12z-18)=2z-3 | | 2(x+6)=8x | | 5(2^t)=40 | | 4r+3=5r-1 | | 4(2-1)=-2(3r+16) | | -8=2-r | | -4(1+6x)+2x=-6x-36 | | 5^t=30 | | 5x7+2=3(x−5) | | 4(9x+8)-5=387 | | z2=25/64 | | -5(6n-7)=245 | | -4(u+7)=-6u-48 | | 16=-(1+n) | | 7r+6=3r+14 | | -7(6+6a)=252 | | 1+4n+7n=23 |